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Motivation

Fluid catalytic cracking (FCC) is a primary step in
petroleum refineries.

FCC provides greater levels of high-octane gasoline and
by-product gases than the out-dated thermal cracking
process.

In the FCC process, the cracking reactions in the riser-
reactor result in deactivating the catalyst from coke
formation.

The regenerator plays a crucial role of combusting the
accumulated coke and thus, re-activating the catalyst
for a continuous process operation.



Multi-scale Problem

Multiphase gas-solids fluidized bed reactors are of
multiphase structure.

= Single particles, particle clusters/bubbles, fluid dynamics, heat
and mass transfer, and reaction kinetics are components of this
multiphase structure.

The problem is simplified, and we are considering a
regenerator section of a fluid catalytic cracking (FCC)
reactor.

= Single particles, particle transfer and clustering within the main
stream are considered.



Governing Equations

(Eulerian-Eulerian Two-Phase Model)

Each phase is treated as interpenetrating continua,
identified by their phase fraction and exchange properties
like momentum.

Each of these continua is described by means of a
continuity and a momentum equation.

The gas and particulate phases are coupled through the
interphase drag force term in their momentum equation.



Governing Equations

(Eulerian-Eulerian Two Phase Model)

Gas phase equations
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Governing Equations

(Eulerian-Eulerian Two Phase Model)

Interphase momentum transfer

GidasPow drag coefficient relation
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Kinetic Theory of the Granular Flow

Fluid dynamic properties of the particulate flow
are calculated coupling the kinetic theory of the
granular flow with frictional stress models .
Granular Energy Equation:
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Kinetic Theory of the Granular Flow

Particle Phase Bulk Viscosity:
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Kinetic Theory of the Granular Flow

Restitution Coefficient: e, =08
Dissipation Term due to Inelastic Collisions:
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Dissipation of Granular Energy due to Viscous
Damping: Jvis = _3Kdrag®s

Production of granular energy due to slip between gas
and particles:
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Frictional Stress Models

When particles are closely packed, the behavior of
the granular flow is influenced by continuous
contact among the particles.

Johnson & Jackson proposed a frictional-kinetic
closure for the particle shear stress:
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Numerical Platform

The OpenFOAM toolkit is employed as an open-source
finite-volume C++ code.

The multiphaseEulerFoam solver within OpenFOAM is
employed to solve the governing equations.

Pressure-momentum coupling is addressed through the

PIMPLE algorithm.

Simulations are performed on BP America HPC machines.



Numerical Schemes

Volume-fraction divergence term: vanlLeer or upwind
schemes are utilized.

Laplacian term: second-order central differencing

To account for non-orthogonality and maintain second-order
accuracy, an explicitly corrected surface normal gradient
scheme is employed.

Gradient terms: Gauss or second-order least squares

The multidimensional cell-limited scheme is employed to

limit the gradient such that extrapolated centroid values at
faces satisfy the maximum principle.
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Numerical Settings

The convergence criterion for pimple algorithm is set
for pressure residual and equal to 107>,
For further stabilization, under-relaxation value of 0.3
is used for pressure field and value of 0.7 is used for
momentum equation.
Iterations

Outer correctors: 20

Inner correctors: 1

Non-orthogonality correctors: 1
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Computational Domain

and Boundary Conditions

2,647,382 unstructured grid cells
Particulate inlets a5 =0.6,0, = 0.4
Outlet Airflow inlets as =0,0g =1
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Defined Cases and Objective

Case A

Gauss linear gradient and upwind volume-fraction
related divergence schemes

Case B

Least squares gradient and vanLeer volume-fraction
related divergence schemes

All other schemes are identical between two cases

Particle clustering in lower parts of the

regenerator and volume fractions in upper parts of
the regenerator and outlet are investigated.
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Particle Characteristics

Particle diameter is considered to be 75 pm.

Particle velocity is specified at the oulets.

1.1645 m/s with 45 degrees upward angle

Based on the height of the regenerator (22.5
m), one flow-through time for the particles
takes about 10 seconds.



Results and Discussion

The following results are still in preliminary
stages and under development.

Contours of particle volume fraction and their
distribution range are discussed in addition to
the particle velocity contours.



Three-dimensional Contours of

Particle Volume Fraction
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Three-dimensional Contours of

Particle Volume Fraction
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Three-dimensional Contours of

Particle Vertical Velocity
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Two-dimensional Contours of

Particle Vertical Velocity
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Particle Distribution Ranges

In Regenerator
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Conclusions and Future Work

An Euler-Euler numerical model is employed to simulate the
solid-gas multiphase flow inside regenerators in fluid
catalytic cracking refinery units.

A comparison between first and second-order gradient and
volume-fraction related divergence schemes is performed.
The case with first order schemes provided peak values of
velocity field and volume fraction lower than the second-
order case.

Future work:

Implementation of filtered models to reduce the computational cost.

Provide a more complex computational domain that considers other
constituting parts of the FCC riser such as the outlet tubes and inlet

pipes.
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